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Abstract

Have you ever thought about the largest number of Chicken McNuggets that can’t be
bought with available pack sizes? This simple question takes us into the study of Frobenius
numbers: Let A = (a1, a2, . . . , ak) be a k-tuple of positive integers and s ≥ 0. The generalized
Frobenius number g(A; s) is the largest integer that has at most s representations in terms
of a1, a2, . . . , ak with non-negative integer coefficients. In this talk, we present a formula for
the generalized Frobenius number in the case k = 3 under certain conditions.

1 Introduction

The purpose of this note is to provide an overview of the results obtained by the author in [14]
and [15] on generalized Frobenius numbers in three variables. For integers n ≥ 1, k ≥ 2, let
A = (a1, a2, . . . , ak) be a k-tuple of positive integers and let d(n;A) = d(n; a1, a2, . . . , ak) be the
number of representations to a1x1 + a2x2 + · · ·+ akxk = n. Its generating series is given by∑

n≥0

d(n; a1, . . . , ak)x
n =

1

(1− xa1)(1− xa2) · · · (1− xak)
.

Sylvester [16] and Cayley [6] show that d (n; a1, a2, . . . , ak) can be expressed as the sum of a
polynomial in n of degree k − 1 and a periodic function of period a1a2 · · · ak. Using Bernoulli
numbers, Beck, Gessel, and Komatsu [1] derive the explicit formula for the polynomial section.
Tripathi [19] provides a formula for d(n; a1, a2). Komatsu [8] shows that the periodic function
part is defined in terms of trigonometric functions for three variables in the pairwise coprime
case.

There is the well-known linear Diophantine problem, posed by Sylvester [18], known as the
Frobenius problem1: Given positive integers a1, a2, . . . , ak such that gcd(a1, a2, . . . , ak) = 1, find
the largest integer that cannot be expressed as a non-negative integer linear combination of these
numbers. The largest integer is called the Frobenius number of the tuple A = (a1, a2, . . . , ak),
and is denoted by g(A) = g(a1, a2, . . . , ak). The Frobenius number of A = (a1, a2, . . . , ak) exists
if and only if a1, a2, . . . , ak are relatively prime i.e. gcd(a1, a2, . . . , ak) = 1 see for example [13].
With the above notation, the Frobenius number is given by

g(A) = max{n ∈ Z | d(n;A) = 0}.

For instance, at McDonald’s one can only order packs of 6, 9, or 20 Chicken McNuggets. The
following list shows the numbers of nuggets that cannot be purchased by ordering any amounts
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of these packs (integers that cannot be expressed by 6, 9, and 20): 1, 2, 3, 4, 5, 7, 8, 10, 11, 13,
14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, and 43. Therefore, g(6, 9, 20) = 43.

Note that if all non-negative integers can be expressed as a non-negative integer linear
combination of A, then g(A) = −1. For example, g(1, 2) = −1.

For two variables A = {a, b} ⊂ Z>0, it is shown by Sylvester [17] that

g(a, b) = ab− a− b. (1)

For example, consider A = (a, b) = (3, 5). Then the Frobenius number of A is given by g(3, 5) =
15− 3− 5 = 7, which means that all integers n > 7 can be expressed as a non-negative integer
linear combination of 3 and 5.

Tripathi [20] has provided explicit but complicate formulas for calculating the Frobenius
number in three variables. However, it is important to note that closed-form solutions for the
general case become increasingly challenging when the number of variables exceeds three (k > 3).
Nevertheless, various formulas have been proposed for Frobenius numbers in specific scenarios
or special cases. For example, explicit formulas in some particular cases of sequences, including
arithmetic, geometric-like, Fibonacci, Mersenne, and triangular (see [12] and references therein)
are known.

In this note, we will focus on a generalization of the Frobenius number. For a given non-
negative integer s, let

g(A; s) = g(a1, a2, . . . , ak; s) = max{n ∈ Z | d(n;A) ≤ s}

be the largest integer such that the number of expressions that can be represented by a1, a2, . . . , ak
is at most s. Notice that g(a1, a2, . . . , ak) = g(a1, a2, . . . , ak; 0). That means all integers bigger
than g(A; s) have at least s+ 1 representations. The g(A; s) is called the generalized Frobenius
number. Furthermore, g(A; s) is well-defined (i.e. bounded above) (see [7]).

As a generalization of (1), for A = (a, b) and s ∈ Z≥0, (see [3]), an exact formula for
g(A, s) = g(a, b; s) is given by

g(a, b; s) = (s+ 1)ab− a− b. (2)

In general, we have d
(
g(A; s);A

)
≤ s, but in the case |A| = 2 one can show that actually

d
(
g(A; s);A

)
= s. Similar to the s = 0 case, exact formulas for the generalized Frobenius

number in the cases k ≥ 3 are still unknown. For k = 3 exact formulas are just known for
special cases. For example, there are explicit results in the case of triangular numbers [10],
repunits [9] and Fibonacci numbers [11]. Recently, Binner [5] provide bounds for the number of
solutions a1x1 + a2x2 + a3x3 = n and use these bounds to solve g(a1, a2, a3; s) when s is large.
In 2022, Woods [21] provide formulas and asymptotics for the generalized Frobenius problem
using the restricted partition function.

One of main results is the following explicit formula for a special case of the generalized
Frobenius number in three variables [14].

Theorem 1 ([14]). Let a1, a2 and a3 be positive integers with gcd(a1, a2, a3) = 1 and let s ∈ Z≥0.
If d1 = gcd(a2, a3) and suppose that a1 ≡ 0 (mod a2

d1
) or a1 ≡ 0 (mod a3

d1
), then

g

(
a1, a2, a3;

s∑
j=0

⌈
ja2a3
a1d21

⌉)
= (s+ 1)

a2a3
d1

+ a1d1 − a1 − a2 − a3.



Remark 2. In Theorem 1, the order of the integers in the tuple (a1, a2, a3) does not matter due
to the symmetry of g. So, if d2 = gcd(a1, a3) and a2 ≡ 0 (mod a1

d2
) or a2 ≡ 0 (mod a3

d2
), then

g

(
a1, a2, a3;

s∑
j=0

⌈
ja1a3
a2d22

⌉)
= (s+ 1)

a1a3
d2

+ a2d2 − a1 − a2 − a3.

Similarly, if d3 = gcd(a1, a2) and a3 ≡ 0 (mod a1
d3
) or a3 ≡ 0 (mod a2

d3
), then

g

(
a1, a2, a3;

s∑
j=0

⌈
ja1a2
a3d21

⌉)
= (s+ 1)

a1a2
d3

+ a3d3 − a1 − a2 − a3.

Remark 3. Notice that

U(a1,a2,a3) :=
3⋃

i=1

{
s∑

j=0


j
∏

1≤ℓ≤3
ℓ̸=i

aℓ

aid2i

 | s ≥ 0

}
⊆ {d(n; a1, a2, a3) | n ∈ Z>0}

and in general the left set is a proper subset of the right. For example, d(120; 10, 15, 21) = 6 but

6 ̸∈ U(10,15,21) = {0, 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 20, 22, 24, . . .} ⊊ {d(n; 10, 15, 21) | n ∈ Z>0}.

However, they are equal in some cases. For example, if a1, a2 and a3 are of the form in [2],
then we obtain that

U(a1,a2,a3) = {tk | k ∈ Z≥0} = {d(n; a1, a2, a3) | n ∈ Z>0},

where tk is the kth triangular number which is given by tk =
(
k+1
2

)
.

We will give the proof of Theorem 1 in Section 3.

The other main result is to show the explicit formula for three consecutive triangular numbers
which is g(tn, tn+1, tn+2; s) for all s ≥ 0 and for all sufficiently large n (depends on s).

Theorem 4 ([15]). The g(tn, tn+1, tn+2; s) are given for all s ≥ 0 as follows:

(i) For even n > 6⌊
√
s+ 1⌋ − 6, we have

g(tn, tn+1, tn+2; s) =
(n+ 1)(n+ 2)

4
(qsn+ 6cs)− 1.

(ii) For odd n > 6

⌊√
4s+5−1

2

⌋
− 3, we have

g(tn, tn+1, tn+2; s) =
(n+ 1)(n+ 2)

4
(qsn+ 6cs − 3δs)− 1.

Here the qs, cs and δs are given by

qs = 2⌊
√
s⌋+ 2 + δs, cs = s− ⌊

√
s⌋2 − δs⌊

√
s⌋, δs =

{
1 if s ≥ ⌊

√
s⌋2 + ⌊

√
s⌋,

0 else.

We define B = {n ∈ Z≥1 | n = k2 or n = k(k + 1),∃k ≥ 1} = {1, 2, 4, 6, 9, 12, 16, . . .}. Then,
we obtain the following corollary whose main idea is to derive a formula for g(tn, tn+1, tn+2; s+1)
based on g(tn, tn+1, tn+2; s) when s ≥ 0.



Corollary 5. Let s ∈ Z≥0. Then the following statements hold:

(i) If s+ 1 ̸∈ B, we have

g(tn, tn+1, tn+2; s+ 1)− g(tn, tn+1, tn+2; s) =
6(n+ 1)(n+ 2)

4
.

(ii) If n is even and s+ 1 ∈ B, that is s+ 1 = k2 or s+ 1 = k(k + 1) (∃k ≥ 1), then

g(tn, tn+1, tn+2; s+ 1)− g(tn, tn+1, tn+2; s) =
(n− 6k + 6)(n+ 1)(n+ 2)

4
.

(iii) If n is odd and s+ 1 ∈ B, then

g(tn, tn+1, tn+2; s+ 1)− g(tn, tn+1, tn+2; s) =

{
(n−6k+9)(n+1)(n+2)

4 if s+ 1 = k2,
(n−6k+3)(n+1)(n+2)

4 if s+ 1 = k(k + 1).

2 Preliminary Lemmas

Before proving Theorem 1, we introduce some Lemmas. Beck and Kifer [2] show the following
result on g(a1, a2, . . . , ak; s) in terms of ℓ = gcd(a2, a3, . . . , ak).

Lemma 6 ([2, Lemma 4]). For k ≥ 2, let A = (a1, . . . , ak) be a k-tuple of positive integers with
gcd(A) = 1. If ℓ = gcd(a2, a3, . . . , ak), let aj = ℓa′j for 2 ≤ j ≤ k. Then for s ≥ 0

g(a1, a2, . . . , ak; s) = ℓ g
(
a1, a

′
2, a

′
3, . . . , a

′
k; s
)
+ a1(ℓ− 1).

The next lemma give an upper bound for the number of representations to a1x1+· · ·+akxk =
g(a1, . . . , ak; s) − jc, for all integers j such that 0 ≤ jc ≤ g(a1, . . . , ak; s) when c ≡ 0 (mod ar)
for some r ∈ {1, . . . , k}.

Lemma 7. For k ≥ 2, let A = (a1, . . . , ak) be a k-tuple of positive integers with gcd(A) = 1 and
let s ∈ Z≥0. If c is a positive integer such that c ≡ 0 (mod ar) for some r = 1, . . . , k, then, for
all integers 0 ≤ jc ≤ g(A; s),

d
(
g(A; s)− jc;A

)
≤ s.

Proof. Suppose that c ∈ Z>0 such that c ≡ 0 (mod ar) for some r = 1, . . . , k. Assume that

there exists 0 ≤ j ≤ g(A;s)
c such that

d
(
g(A; s)− jc;A

)
≥ s+ 1.

So, there are at least s+ 1 non-negative integer solutions (x1, . . . , xk) such that

g(A; s)− jc =

k∑
ℓ=1

xℓaℓ.

Since c ≡ 0 (mod ar), then c = arq for some q ∈ Z0. So, we obtain that

g(A; s) = x1a1 + . . .+ xr−1ar−1 + (xr + jq)ar + xr+1ar+1 + . . .+ xkak,

this means that g(A; s) has at least s + 1 non-negative representations in terms of a1, . . . , ak.
We get a contradiction since g(A; s) must have at most s representations.



To accomplish the proof of Theorem 1, we need the following lemma. If k = 2, says A =
{a, b}, then, for a non-negative number j ≤ g(a, b; s)/c, d

(
g(a, b; s) + jc; a, b

)
= i is equivalent

to g(a, b; i− 1) < g(a, b; s) + jc ≤ g(a, b; i).

Lemma 8. Let a, b ∈ Z>0 with gcd(a, b) = 1, and let i, s ∈ Z≥0. Suppose that c is a positive
integer such that c ≡ 0 (mod a) or c ≡ 0 (mod b) and j ∈ Z. Then

d
(
g(a, b; s) + jc; a, b

)
= i,

if and only if,
g(a, b; i− 1) < g(a, b; s) + jc ≤ g(a, b; i).

Here we set g(a, b;−1) to be −2.

Proof. Without loss of generality, we assume that c ≡ 0 (mod a). For convenient, throughout
the proof, for s ≥ 0, we denote g(s) := g(a, b; s), which is g(s) = (s+ 1)ab− a− b.

(⇒) Suppose that d(g(s) + jc; a, b) = i. By the definition of g(i) = g(a, b; i), it follows
immediately that g(s) + jc ≤ g(a, b; i). Clearly, if i = 0, then −2 < g(s) + jc ≤ g(0), we are
done. So, assume that i ≥ 1. Obviously, g(s)+ jc ̸= g(i− 1), otherwise d(g(s)+ jc; a, b) = i− 1,
a contradiction. It remains to show that

g(i− 1) < g(s) + jc.

We will prove this statement by assuming that g(s) + jc < g(i− 1). So if we set ∆ = g(i− 1)−
(g(s) + jc), then ∆ > 0, moreover ∆ is a positive integer that is a multiple of a by using the
hypothesis c ≡ 0 (mod a). Thus

g(i− 1) = g(s) + jc+∆,

this implies that g(i − 1) = g(a, b; i − 1) has at least i representations in terms of a and b, a
contradiction with the definition of g(a, b; i− 1).

(⇐) Suppose that g(i − 1) < g(s) + jc ≤ g(i) for some i ∈ Z≥0. Clearly, since g(i − 1) <
g(s) + jc, we have

d(g(s) + jc; a, b) ≥ i.

Our goal is to show that d(g(s) + jc; a, b) = i. If g(s) + jc = g(i), then we are done. So we
assume that g(s) + jc < g(i) and also assume that d(g(s) + jc; a, b) > i. With the same setting,
let ∆ = g(i)− (g(s) + jc). Then ∆ > 0. In addition, ∆ is a multiple of a. So we obtain that

g(i) = g(s) + jc+∆,

i.e., g(i) has at least i + 1 representations in terms of a and b, a contradiction. Therefore,
d(g(s) + jc; a, b) = i. Similarly to that, we can prove the case where c ≡ 0 (mod b).

Lemma 9. Let a, b ∈ Z>0 with a < b, gcd(a, b) = 1, and let s,K ∈ Z≥0. If m is an integer such
that m > g(a, b; s) +Ka, then, for all j ∈ Z≥0, we have

d
(
m− ja; a, b

)
≥ d
(
g(a, b; s) + (K − j)a; a, b

)
.

Proof. We will prove by induction on j. If j = 0, we can assume that there exists a non-negative
integer ℓ such that d

(
g(a, b; s) +Ka; a, b

)
= ℓ. By Lemma 8, we have

g(a, b; ℓ− 1) < g(a, b; s) +Ka ≤ g(a, b; ℓ).



Hence m > g(a, b; ℓ− 1), which means

d(m; a, b) ≥ ℓ = d
(
g(a, b; s) +Ka; a, b

)
.

The base step is proved.
Let j be a non-negative integer and assume that

d
(
m− ja; a, b

)
≥ d
(
g(a, b; s) + (K − j)a; a, b

)
.

We want to show that

d
(
m− (j + 1)a; a, b

)
≥ d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
.

Assume that d
(
m− (j+1)a; a, b

)
< d
(
g(a, b; s)+ (K− (j+1))a; a, b

)
. Suppose that there exists

ℓ ≥ 0 such that d
(
m− (j + 1)a; a, b

)
= ℓ. So

ℓ < d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
.

Observe that d
(
g(a, b; s)+ (K − (j+1))a; a, b

)
≤ d
(
g(a, b; s)+ (K − j)a; a, b

)
by Lemma 8. One

can see that since d
(
m− (j + 1)a; a, b

)
= ℓ, then

d
(
m− ja; a, b

)
=

{
ℓ+ 1 if b | (m− ja),

ℓ otherwise.

If d
(
m− ja; a, b

)
= ℓ, then we get a contradiction that

ℓ = d
(
m− ja; a, b

)
≥ d
(
g(a, b; s) + (K − j)a; a, b

)
≥ d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
> ℓ.

If d
(
m− ja; a, b

)
= ℓ+ 1, then

ℓ < d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
≤ d
(
g(a, b; s) + (K − j)a; a, b

)
≤ d
(
m− ja; a, b

)
= ℓ+ 1.

It follows that

d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
= d
(
g(a, b; s) + (K − j)a; a, b

)
= d
(
m− ja; a, b

)
= ℓ+ 1.

Since d
(
g(a, b; s)+(K−(j+1))a; a, b

)
= ℓ+1, by Lemma 8, g(a, b; s)+(K−(j+1))a > g(a, b; ℓ).

This means m− (j + 1)a > g(a, b; s) + (K − (j + 1))a > g(a, b; ℓ), thus

d
(
m− (j + 1)a; a, b

)
≥ ℓ+ 1,

which contradicts with d(m− (j + 1)a; a, b) = ℓ. Therefore,

d
(
m− (j + 1)a; a, b

)
≥ d
(
g(a, b; s) + (K − (j + 1))a; a, b

)
,

as required.

3 Proof of Theorem 1

By applying Lemma 6, Lemma 7 and Lemma 8, we can prove Theorem 1 as follows.



Proof of Theorem 1. Suppose that d1 = gcd(a2, a3) and a1 ≡ 0 (mod a2
d1
). By applying Lemma

6, we obtain that

g

(
a1, a2, a3;

s∑
j=0

⌈
ja2a3
a1d21

⌉)
= d1g

(
a1,

a2
d1

,
a3
d1

;
s∑

j=0

⌈
ja2a3
a1d21

⌉)
+ a1(d1 − 1). (3)

We will show that

g

(
a1,

a2
d1

,
a3
d1

;

s∑
j=0

⌈
ja2a3
a1d21

⌉)
= g

(
a2
d1

,
a3
d1

; s

)
.

Then one can see that, for m ∈ Z≥0,

d

(
m; a1,

a2
d1

,
a3
d1

)
=

⌊ m
a1

⌋∑
j=0

d

(
m− ja1;

a2
d1

,
a3
d1

)
. (4)

Put m = g

(
a2
d1
, a3d1 ; s

)
, then we obtain that

d

(
g

(
a2
d1

,
a3
d1

; s

)
; a1,

a2
d1

,
a3
d1

)
=

 g

(
a2
d1

,
a3
d1

;s

)
a1

∑
j=0

d

(
g

(
a2
d1

,
a3
d1

; s

)
− ja1;

a2
d1

,
a3
d1

)
. (5)

By Lemma 7, we have that each value of d

(
g
(
a2
d1
, a3d1 ; s

)
− ja1;

a2
d1
, a3d1

)
have to be equal to

any of 0, 1, . . . , s. To calculate the right-hand side of (5), we count the number of 0 ≤ j ≤
g
(
a2
d1
, a3d1 ; s

)
/a1 such that

d

(
g

(
a2
d1

,
a3
d1

; s

)
− ja1;

a2
d1

,
a3
d1

)
= i, (6)

for all i = 1, 2, . . . , s. For convenient, let gs := g
(
a2
d1
, a3d1 ; s

)
. For given i the j such that (6) holds

are, by Lemma 8, those with gi−1 < gs − ja1 ≤ gi. By (2), this is equivalent to

ia2a3
d21

− a2
d1

− a3
d1

< (s+ 1)
a2a3
d21

− a2
d1

− a3
d1

− ja1 ≤ (i+ 1)
a2a3
d21

− a2
d1

− a3
d1

.

So,

(s+ 1− i)
a2a3
a1d21

> j ≥ (s− i)
a2a3
a1d21

.

Thus, by Lemma 8, there are ⌈
(s+ 1− i)

a2a3
a1d21

⌉
−
⌈
(s− i)

a2a3
a1d21

⌉



of j in [0, gs/a1) such that d
(
gs − ja1;

a2
d1
, a3d1

)
= i for i = 1, 2, . . . , s. So, by (5), we have

d

(
g
(a2
d1

,
a3
d1

; s
)
; a1,

a2
d1

,
a3
d1

)

=

⌊
gs
a1

⌋∑
j=0

d

(
g

(
a2
d1

,
a3
d1

; s

)
− ja1;

a2
d1

,
a3
d1

)

= s

⌈
a2a3
a1d21

⌉
+ (s− 1)

(⌈
2a2a3
a1d21

⌉
−
⌈
a2a3
a1d21

⌉)
+ (s− 2)

(⌈
3a2a3
a1d21

⌉
−
⌈
2a2a3
a1d21

⌉)
+

· · ·+
(⌈

sa2a3
a1d21

⌉
−
⌈
(s− 1)a2a3

a1d21

⌉)
=

s∑
j=0

⌈
ja2a3
a1d21

⌉
.

Therefore, by the choice of m = g
(
a2
d1
, a3d1 ; s

)
and (4) combined with Lemma 9, this value m is

the largest that the right-hand side of (4) is (less than or) equal to
∑s

j=0

⌈
ja2a3
a1d21

⌉
. Then

g
(a2
d1

,
a3
d1

; s
)
= g

(
a1,

a2
d1

,
a3
d1

;

s∑
j=0

⌈
ja2a3
a1d21

⌉)
.

Hence, by (3) and (2),

g

(
a1, a2, a3;

s∑
j=0

⌈
ja2a3
a1d21

⌉)
= d1g

(a2
d1

,
a3
d1

; s
)
+ a1(d1 − 1)

= d1

(
(s+ 1)

a2a3
d21

− a2
d1

− a3
d1

)
+ a1d1 − a1

= (s+ 1)
a2a3
d1

+ a1d1 − a1 − a2 − a3.

Compared to the results in [9, 11] our main theorem seems more useful when s is large, since
their results have an upper bound on s. The result in [4] holds for s is extremely large. For
example, by [4, Section 3.2], g(16, 23, 37; s) can be found for s ≥ 157291918. Therefore, our
result behaves nicely for s not too large. In [21] the value for s is not explicitly given.

4 Proof of Theorem 4

In this section, we give a sketch of the proof of Theorem 4. For this, we define xevens , yevens , xodds ,
and yodds as follows.

Definition 10. Let s be a non-negative integer and let k be the non-negative integer such that

s = k(k + 1) + i,



for some i ∈ {0, 1, . . . , 2k + 1}. Then we define integers xevens , yevens , xodds , and yodds as follows:

(
xevens , yevens

)
=

{(
i, 2(k − i)

)
if 0 ≤ i ≤ k,(

i− k − 1, 4k − 2i+ 3
)

if k + 1 ≤ i ≤ 2k + 1,(
xodds , yodds

)
=

{(
2i, k − i

)
if 0 ≤ i ≤ k,(

2(i− k)− 1, 2k − i+ 1
)

if k + 1 ≤ i ≤ 2k + 1,

Sketch of proof of Theorem 4. By using Lemma 6 we obtain that for s ≥ 0

g

(
tn, tn+1, tn+2; s

)
= d1g

(
tn,

tn+1

d1
,
tn+2

d1
; s

)
+ tn(d1 − 1),

where d1 = gcd(tn+1, tn+2). One can show that, for all even n > 6⌊
√
s+ 1⌋ − 6 and for all odd

n > 6
⌊√

4s+5−1
2

⌋
− 3,

g
(
tn,

tn+1

d1
,
tn+2

d1
; s
)
= g
( tn+1

d1
,
tn+2

d1
;xs

)
+ ystn

= (xs + 1)
tn+2tn+1

d21
− tn+2

d1
− tn+1

d1
+ ystn,

where (xs, ys) = (xevens , yevens ) if n is even and (xs, ys) = (xodds , yodds ) if n is odd. Using this, one
can then show by direct calculation that the statement in Theorem 4 follows.
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